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Space-time dispersion of graphene conductivity
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Abstract. We present an analytic calculation of the conductivity of pure graphene as a function of frequency
ω, wave-vector k, and temperature for the range where the energies related to all these parameters are
small in comparison with the band parameter γ � 3 eV, but much larger than the collision rate τ−1.
The simple asymptotic expressions are given in various limiting cases. For instance, the conductivity for
kv0 � T � ω is equal to σ(ω, k) = e2/4� and independent of the band structure parameters γ and v0.
Our results are also used to explain the known dependence of the graphite conductivity on temperature
and pressure.

PACS. 81.05.Uw Carbon, diamond, graphite – 78.67.Ch Nanotubes – 78.67.-n Optical properties of low-
dimensional, mesoscopic, and nanoscale materials and structures

Since the pioneering experimental investigations of a sin-
gle atomic layer of graphite (graphene) [1,2], its proper-
ties attract much attention. Among the various reasons
for this interest, there is the following. Graphene can
be wrapped into 0d fullerenes, rolled into 1d nanotubes,
and stacked into 3d graphite [3]. Hence one has a possi-
bility to study the dimensionality effects for the unique
substance [4]. Unusual properties of graphene appeal for
their explanation. Graphene exhibits Shubnikov-de Haas
oscillations with the temperature dependence explained
in terms of the standard Fermi-gas theory. Furthermore,
while the carrier concentration is decreasing in the field
gate experiment, the graphene conductivity at low tem-
peratures goes to the finite minimal values of the order
of σmin � e2/h. Much theoretical efforts [5–11] have been
devoted to evaluate the minimal conductivity in differ-
ent approaches. The finite values of conductivity at low
temperature means that 2d graphene turns out to be a
metal (or a semimetal) in contradiction with the recent
theoretical analysis [12]. On the other hand, it was found
that the weak-localization corrections can have a different
sign depending on the interaction range of impurity poten-
tials [13] or can be strongly suppressed [14] because of the
Dirac peculiarity of the electron spectrum. The problem of
the carrier interaction with defects in graphene and in the
underlying substrate was studied in references [8,15,16].

Two-dimensional graphene has a very simple band
structure, which can be obtained with help of the symme-
try consideration or in the tight-binding approximation.
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Fig. 1. The Brillouin zone of graphene and
the electron spectrum in the vicinity of the
K points.

It was shown in references [17,18] that the energy bands
of graphene are degenerated at the corners of the 2d Bril-
louin zone K = (0, 4π/3

√
3a), where a = 1.44 Å is the

interatomic distance (see Fig. 1). This is the Dirac-type
spectrum but it is massless and two-dimensional. It was
demonstrated that due to the symmetry arguments such
a gapless spectrum with the conic point in the 3d case
turns out to be stable with respect to the Coulomb in-
teraction [19]. One can proof that this stability remains
also for the 2d graphene spectrum with the conic point.
Such simple band structure can be used in analytic cal-
culations of various thermodynamic and transport prop-
erties of graphene. An example of such calculations was
presented in reference [20] where the imaginary part of
the dielectric function Imε(ω) of graphite was calculated.
The gapless band structure of graphene also results in the
unusual behavior of conductivity. Despite the enormous
number of papers devoted to carbon materials, the ana-
lytic expression of graphene conductivity σ(ω, k) was not
yet derived to our best knowledge.

The standard diagrammatic approach to calculation
of transport properties of impure metals is restricted by
the fundamental requirement that the mean free path of
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carriers � = v0τ must be much larger than the electron
wavelength λ = h/pF , i.e. �pF � 1. This condition can-
not evidently be satisfied for graphene when the Fermi
surface degenerates to the points. We avoid this difficulty
addressing the problem in the case that the graphene sam-
ple is clean enough but temperature is finite (T � 1/τ).
Then the temperature appears instead of the Fermi energy
and electrons obey Boltzmann statistics.

In the present paper, we analytically calculate both the
frequency and wave-vector dependencies of the graphene
conductivity σij(ω, k) at finite temperature T for the rel-
atively low frequencies ω � 3 eV when only the nearest π
bands are taken into consideration. Let us emphasize that
we obtain the definite conductivity in collisionless limit
because the finite values of frequencies or wave-vectors
are considered. In particular, the real part of conductivity
appears as a result of the inter-band electron transitions
in the alternative electric field. We found that the value of
this inter-band contribution at frequencies ω > T agrees
well with the minimal dc conductivity obtained in exper-
iments [1].

Let us briefly remind properties of the graphene elec-
tron spectrum. The tight-binding approximation allows to
write down the following effective Hamiltonian 2 × 2 ma-
trix

H(p) =
(

0 h(p)
h∗(p) 0

)
, (1)

where h(p) = γ
{
eipxa + 2e−ipxa/2 cos (pya

√
3/2)

}
and

γ = 〈ψ(a, 0)|H0|ψ(0, 0)〉 is the ppπ transfer integral. The
dispersion law of graphene, ε1,2(p) can be obtained by
means of its diagonalization:

ε1,2(p) = ±γ
{
1 + 4 cos (3pxa/2) cos (pya

√
3/2)

+ 4 cos2 (pya
√

3/2)
}1/2

. (2)

In the vicinity of the K point, the matrix element can be
expanded as

h(p) = v0(ipx − py),

where v0 = 3γa/2. This results in the linear dispersion
relation ε1,2(p) = ±v0p.

Let us pass to the calculation of the electric current,
following the paper by Abrikosov [21], where the dielectric
function of Bi-type metals was considered. We assume
that the external field is described by the vector potential
Aj . The current operator has the form

ji(x) = eψ̃+(x′)vi
x′xψ̃(x) − e2

c
ψ̃+(x′)(m−1)ij

x′xψ̃(x)Aj ,

(3)
where x′ → x, vi

x′x and (m−1)ij
x′x are the velocity and

mass operators correspondingly, the tilde in the notation
ψ̃ means that the operator is taken in the interaction rep-
resentation with

V = −e
c

∫
ψ+(x′)vi

x′xψ(x)Ai(x)d4x. (4)

The matrix of the velocity v = ∂H(p)/∂p near the
point K in the band representation is determined by the

Hamiltonian (1). By the use of the unitary transformation,
which transforms the Hamiltonian from the band repre-
sentation to the diagonal one, we obtain the matrix of the
velocity in the same representation:

v =
v0
p

(
expx + eypy i(expy − eypx)

−i(expy − eypx) −expx − eypy

)
, (5)

where ei are unit vectors along the coordinate axis direc-
tions.

We calculate the current in the linear approximation
in Ai(x). Therefore, the second term in equation (3) can
be taken in zeroth approximation with respect to the in-
teraction (4). Expanding the first term to the first order
in Ai(x), we get the retarded correlator of four ψ opera-
tors which has to be averaged over the Gibbs ensemble.
At finite temperatures, the Fourier component (with re-
spect to the spatial coordinates and imaginary time) of
this correlator

P (ωl,k) = T
∑
ωn

∫
d2p

(2π)2
Tr

{
viG (p+) vjG (p−)

}
(6)

is expressed in terms of the temperature Green’s functions:

G (p) = [iωn −H(p)]−1
.

In equation (6) the notations p± = (ωn ± ωl/2,p± k/2)
are used, the summation is carried out over the fermionic
frequencies ωn = 2πT (n+ 1/2) , while the trace operation
is performed over the band index of the Hamiltonian (1).
The latter can be easily carried out in the representation
where the Hamiltonian has diagonal form:

Tr
{
viGvjG}

= vi
11G11v

j
11G11 + vi

22G22v
j
22G22

+ vi
12G22v

j
21G11 + vi

21G11v
j
12G22.

Then one can perform the summation over ωn in stan-
dard way. For instance, for the cross product of the Green
functions one finds

T
∑
ωn

G11(p+)G22(p−) =
f0[ε1(p−)] − f0[ε2(p+)]
iωl − ε2(p+) + ε1(p−)

, (7)

where we have taken into account that the photon frequen-
cies ωl = 2πlT are “even” in the Matsubara technique; f0
is the Fermi distribution function. Analytic continuation
of the expressions similar to equation (7) into the upper
half plane of the complex frequency can be performed by
simple substitution iωl → ω + iδ with δ → 0.

Let us notice that the current has to vanish when the
vector potential does not vary in time. Since the second
term in equation (3) is time independent, one can omit
it, subtracting from the first term its value at ω = 0. In
result, we obtain

σij(ω, k) =
ie2

π2
(8)

×
{ ∑

a=1,2

∫
d2pvivj{f0[εa(p−)] − f0[εa(p+)]}

[εa(p+) − εa(p−)][ω − εa(p+) + εa(p−)]

+2ω
∫

d2pvi
12v

j
21{f0[ε1(p−)] − f0[ε2(p+)]}

[ε2(p+) − ε1(p−)]{ω2 − [ε2(p+) − ε1(p−)]2}

}
.
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Fig. 2. The real part of conductivity σ(ω, k → 0) in units e2/�

for two temperatures vs frequency ω in units of temperature.

Hitherto we did not use any peculiarities of the graphene
spectrum besides the number of bands. Thus our main
result (8) has a general character. The expression acquired
only the factor 4 due to summation over spin and over six
points of the K type (two per each Brillouin zone).

The first term in equation (8) corresponds to the intra-
band electron-photon scattering processes. In the limit of
the high carriers concentration (T,EF ) � kv0, it coincides
with the usual Drude expression

σintra
xx (ω, 0) =

e2

π2

∑
a=1,2

∫
d2pv2

ax

iω − τ−1

df0 [εa(p)]
dε

, (9)

if the transport scattering time is large enough, τω � 1.
The second term in equation (8) owes its origin to the
inter-band electron transitions. The real part of this con-
tribution (let us recall, that iωl → ω + iδ) at k → 0
is reduced to the well-known expression for the absorbed
energy due to the direct inter-band transitions.

Let us pass to the discussion of the pure graphene con-
ductivity in absence of gate voltage, when the chemical
potential is equal to zero. The integral (8) can be analyt-
ically performed for various limiting cases.

(i) Small spatial dispersion kv0 � ω, T
Putting k = 0 and integrating over angle, one can

find that the off-diagonal elements of conductivity vanish,
while the diagonal ones shown in Figures 2 and 3 are
equal to

σ(ω, 0) = − ie
2ω

π
×

[
2
ω2

∫ ∞

0

εdε

(
df0(ε)
dε

)

−
∫ ∞

0

dε
f0(−ε) − f0(ε)
ω2 − 4ε2

]
.

The first (intra-band) contribution reads:

σintra(ω, k) = 2 ln 2
ie2T

π�ω
, kv0 � ω, T (10)

(we restore the Planck constant in the final expressions,
T and ω are in the common units). This result was ob-
tained in reference [17] using the Drude expression, equa-
tion (9).

The second (inter-band) term consists of the real
and imaginary parts (the last one due to the pole of the
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Fig. 3. The same as in Figure 2 but for the imaginary part of
conductivity.

integrand). We obtain

σinter (ω, k) =
e2

4�
tanh

ω

4T
− 2ie2

π�

×
{

(T/ω)[ln 2 + 6ζ(3)(T/ω)2], kv0 � T � ω,

(ω/16T ) ln (T/ω), kv0 � ω � T,
(11)

where ζ(3) = 1.20. One can see that the term with ln 2
in the first line of equations (11) cancels the intra-band
contribution (10).

(ii) Large spatial dispersion ω � kv0, T
Let us consider the limit of large dispersion kv0 � ω.

The longitudinal and transversal components (with
respect to the k-direction) of the intra-band contribution
are different now. For instance, the transversal one, which
is important in the optical range, is equal to

σintra
⊥ (ω, k) =

e2

π�

×
{

(4T/kv0) ln 2, ω � kv0 � T,√
πkv0/T exp (−kv0/2T ), ω � T � kv0.

What concerns the inter-band contribution, we obtain for
both components

σinter
⊥ (ω, k) = σinter

‖ (ω, k) = − ie
2ω

2π�

×
{

(1/4T ) ln(4T/kv0), ω � kv0 � T,

1/kv0, ω � T � kv0.

Finally, we make several remarks. Equations (10) and (11)
allows us to estimate the conductivity of pure graphene
when τ−1 = 0. For small k and at low temperatures,
when tanhω/T → 1, the first term in equation (11) plays
the leading role and the conductivity reads:

σ(ω, k) =
e2

4�
, kv0 � T � ω. (12)

Let us underline that this conductivity results from the
electron transitions between two intersecting bands at the
K points of the Brillouin zone. Remarkable fact is that
its value is independent of any parameter of graphene,
like γ0 or v0. Indeed, the universal conductivity behavior
for the samples with different carrier concentrations was
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found in reference [1]. In spite of the fact that the exper-
iment was performed in conditions ω � T, different from
equation (12), the minimal value of measured conductivity
σmin = 2e2/π� was found close to our estimation.

At high temperatures, when the conditions
kv0 � ω � T are fulfilled, the conductivity is gov-
erned by the intra-band contribution depending on
temperature, equation (10). This behavior can be exam-
ined in experiments with the plasmon modes. We obtain
the dispersion law of 2d plasmon modes in graphene

ω =
√
κk, κ =

4e2T ln 2
�2ε∞

,

where ε∞ is the lattice dielectric constant.
So far we considered the 2d graphene sheet. No

experimental data on the temperature dependence of
graphen conductivity have published up to now. But our
results can be immediately applied to the 3d graphite
where the interaction between layers is known to be weak.
Then the integration with respect to the pz component of
the quasi-momentum in the Brillouin zone gives just the
additional factor 1/cz, where cz is the distance between
the layers in the z-direction. In the low-frequency limit
ω � 1/τ , the in-plane conductivity can be estimated as

σa(ω, k → 0) =
e2Tτ

π�cz
, (13)

where τ depends on the energy variable ε or temperature.
Using the Fermi golden rule, one can find the collision
rate for scattering by defects 1/τimp(ε) = nimpa

2|ε| �
nimpa

2T , where nimp is the defect concentration per the
plane unit and a is the interatomic distance. Thus, with
the help of equation (13), we obtain the independent of
temperature residual conductivity.

The temperature dependence arises due to scat-
tering by phonons. The number of phonons in the
2d system at low temperatures (T � TD, TD is the
Debye temperature) is proportional to T 2. Since the
Fermi surface (or the chemical potential) is assumed
to be small (εF ∼ T � TD), all scattering angles
are essential in this region of temperatures. For the
electron collision rate determined by the electron-phonon
interaction, one can write 1/τel−ph = αT 2/TD with
the constant α of the order of unity. Thus the in-plane
resistivity increases linearly with temperature (see Fig. 2):

ρa =
π�cz
e2

(
nimpa

2 +
αT

TD

)
. (14)

This expression answers the question discussed in refer-
ences [22,23] on the pressure dependence of the graphite
resistivity. We see that the resistivity decreases under the
pressure because the inter-layer distance cz decreases and
the Debye temperature TD grows.

In summary, we found a simple analytical expression
for the graphen conductivity which consists of the inter-
and intra-band contributions. At low temperatures and for
small carrier concentration, the first one plays a leading
role (because of the gapless electron dispersion in grapene)
and its estimate agrees with the value obtained in refer-
ence [1]. The second one (temperature dependent intra-
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Fig. 4. In-plane electrical resistivity vs T for a graphite sin-
gle crystal; experimental points reference [22] are fitted at low
temperatures to the theory (solid line) equation (14) with the
atomic concentration of defects nimpa2 = 0.02 and the Debye
factor TD/α = 1100 K.

band contribution) can be observed in the transport as
well as in experiments with plasmon modes.
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